Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue
نویسندگان
چکیده
BACKGROUND Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. METHODOLOGY/PRINCIPAL FINDINGS We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. CONCLUSIONS/SIGNIFICANCE The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics.
منابع مشابه
In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کاملStudying the Mechanical Behavior of Tissue in the Generation of Pressure Sores using Simulation and a Guinea Pig Experimental Model
Introduction: Pressure sores refer to lesions that are produced while a constant pressure causes necrotic tissue to grow. The need for a better comprehension of the process has led researchers to artificial generation of pressure sores. Modeling the mechanical behavior of tissue will provide a better understanding of this process as well as a more suitable selection ...
متن کاملAnisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of ...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کامل